
INVESTIGATING IMPLICIT SHAPE REPRESENTATIONS FOR ALIGNMENT OF LIVERS
FROM SERIAL CT EXAMINATIONS

Nathan D. Cahill1,2, Grace Vesom1, Lena Gorelick3,
Joanne Brady4, J. Alison Noble1, and J. Michael Brady5

1Institute of Biomedical Engineering, University of Oxford, Oxford OX3 HDQ, UK
2Research & Innovation, Carestream Health, Inc., Rochester, NY 14608, USA

3Computer Vision Group, The Weizmann Institute of Science, Rehovot 76100, Israel
4Department of Oncology, Churchill Hospital, Oxford OX3 7LJ, UK

5Wolfson Medical Vision Laboratory, University of Oxford, Oxford OX1 3PJ, UK

ABSTRACT

In this paper, we examine the use of implicit shape representations
for nonrigid registration of serial CT liver examinations. Using
ground truth in the form of corresponding landmarks manually la-
beled by a radiotherapist, we carry out an experiment to determine
whether nonrigid registration performs better when applied to the
original image data or to images constructed from implicit represen-
tations of the liver. We compare a variety of standard regularizers
(elastic, diffusion, and curvature), similarity measures (sum of
squared differences and mutual information), and weighting factors,
using three different implicit shape representations: the Euclidean
Distance Transform, the Poisson Transform (based on the expected
hitting time of a random walk), and a new transform designed to
highlight concavities in the shape.

Index Terms— Image registration, shape, biomedical imaging

1. INTRODUCTION

There are many ways to tackle the problem of image registration.
One traditional classification of image registration approaches is into
image-based or landmark-based approaches. Image-based registra-
tion involves the minimization of a function of the image values
(such as the sum of squared differences (SSD) or mutual informa-
tion (MI)) of the images being registered. Landmark-based regis-
tration involves minimizing a criterion that describes the geometric
distance between features in two images. In the case of liver CT ex-
aminations, natural features would include points on the surface of
the liver or the entire liver surface itself.

In recent years, a number of researchers have blurred the distinc-
tion between image-based and landmark-based approaches to regis-
tration. They have done so by constructing images from implicit
representations of shapes, and then by performing image-based reg-
istration on the resulting images. The signed Euclidean Distance
Transform (DT) is the most commonly used representation for shape
registration [1, 2, 3], although Hong et al. [4] introduce a different
representation called the integral kernel, which is related to the so-
lution of the heat equation over a shape. The specifics of the reg-
istration algorithms differ: Paragios et al. [1] minimize a function
related to SSD over the space of global rigid and local nonparamet-
ric deformations; Huang et al. [2] minimize MI over the space of
free-form deformations pararmeterized by B-splines; Rosenhahn et
al. [3] minimize the SSD within an optic flow estimation framework;

and, Hong et al. [4] minimize SSD over the space of nonparametric
deformations, subject to an elastic regularizer [5].

In this paper, we investigate the use of implicit shape represen-
tations for the nonrigid registration of serial CT examinations of the
liver. We explore representations based on the signed distance trans-
form and on the solution to Poisson’s equation [6]. Using a set of CT
liver examinations from a drug study, with manual liver segmenta-
tions approved by a clinician, we determine (a) whether nonrigid reg-
istration based on implicit representations of the liver outperforms
nonrigid registration based on the original CT image data, and (b)
the optimal choice of dissimilarity measure, regularizer, and weight-
ing factor used by the nonrigid registration algorithm. To aid in an-
swering these questions, we use sets of internal landmarks manually
labeled by a radiotherapist as ground truth from which to measure
target registration error (TRE).

2. PRELIMINARIES

2.1. Image Registration

Consider a reference image Iref and a floating image Ifloat, both
as functions in R

n, and assume they have been globally aligned.
Define a deformationΦ : Rn �→ R

n by:

Φ(x) = x− u (x) , (1)

and call u the displacement.
The object of registration is to find a displacement that mini-

mizes a dissimilarity measure D that measures the dissimilarity be-
tween Iref and the deformed image Iu

float := Ifloat(Φ). In order
to ensure that the minimization problem is well-posed, a regulariz-
ing term R must be added to the dissimilarity measure. The general
form of the registration problem is usually stated as:

min
u

D
(
Iref , Iu

float

)
+ αR(u) , (2)

where α is a positive weighting factor.
The solution to (2) can be found by solving the corresponding

Euler-Lagrange equations:

αAu(x) = −f(x,u(x)) ∀x ∈ Ω,

B[u(x)] = 0 ∀x ∈ ∂Ω, (3)
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where Ω is the interior of the domain Ω̄ over which the images are
defined, ∂Ω = Ω̄−Ω is the boundary ofΩ,A is the partial differen-
tial operator and f the force vector, taken from the Gâteaux deriva-
tives of R and D, respectively, and B is the boundary condition
operator, which is typically chosen to enforce Dirichlet, Neumann,
or periodic conditions on ∂Ω.

Modersitzki [5] describes various homogeneous regularizers for
use with nonparametric image registration. The partial differen-
tial operators corresponding to each of the standard regularizers are
shown in Table 1. Modersitzki also presents the fluid regularizer,

Regularizer Partial Differential Operator A
Elastic −μΔu− (λ + μ)∇div u

Diffusion −Δu

Curvature Δ2
u

Table 1. Standard homogeneous regularizers

which is equivalent in form to the elastic regularizer but is applied
to the velocities of the deformation field. In practice, we have found
that if displacement fields are updated in a memoryless fashion, the
elastic and fluid regularizers yield very similar results.

A variety of dissimilarity measures have been developed for
nonparametric registration; we focus on two: SSD and MI. SSD
assumes that the only differences between values of registered im-
ages is due to Gaussian noise, whereas MI assumes a more flexible
statistical relationship between the image values.

Numerical approximations to the stationary solution of (3) can
be found by fixed-point iteration [5]. If R is one of the standard ho-
mogeneous regularizers and the boundary conditions are Dirichlet,
then the partial differential operator is nonsingular and each itera-
tion has a unique solution that can be found efficiently using Fourier
methods [7].

2.2. Implicit Shape Representations

Let us define S to be the interior of the shape S̄ and assume that
S ⊂ Ω. Then ∂S = S̄ − S is the boundary of S.

2.2.1. Euclidean Distance Transform

The signed Euclidean Distance Transform (DT) WDT yields two
pieces of information: the magnitude provides the Euclidean dis-
tance between a point and the closest point on ∂S, and the sign pro-
vides an indicator as to whether the current point is inside S (posi-
tive) or outside S (negative). Mathematically speaking,WDT is the
solution to the Eikonal equation:

|WDT (x)| = 1 ∀x ∈ S,

WDT (x) = 0 ∀x ∈ ∂S. (4)

Fig.’s 1(a) and 1(a) show a segmented liver and orthogonal slices
of the DT of that liver.

2.2.2. Poisson Transform

Gorelick et al. [6] presented an implicit shape representation based
on the expected time for a symmetric randomwalk to reach the shape
boundary. Based on the solution to Poisson’s equation, this represen-
tation was shown to have superior behavior over the DT for shape
classification, due to its differentiability and its smoothing of noisy
shape boundaries. When extended to three dimensions and assigned

a negative sign on the shape interior, this Poisson Transform (PT)
WPT satisfies

ΔWPT (x) = 6 ∀x ∈ S,

WPT (x) = 0 ∀x ∈ ∂S. (5)

On the exterior of the shape, if no further boundary conditions are
prescribed, the random-walk analogy fails, and the Poisson equation
has infinitely many solutions. Therefore, in order to provide an ex-
tension of this shape representation to the entirety of Ω̄, we need to
define some sort of external boundary condition. One option is to
enforce Neumann boundary conditions on ∂Ω; however, this yields
undesirable behavior of the PT gradient at the image boundaries. In-
stead, we define an open sphere T ⊃ Ω̄ centered on the centroid of
Ω, and solve the following boundary value problem:

ΔWPT (x) = −6 ∀x ∈ T − S̄,

〈∇WP (x) , �n(x)〉 = 0 ∀x ∈ ∂T,

WPT (x) = 0 ∀x ∈ ∂S, (6)

where �n(x) is the outward-pointing normal vector to the surface ∂T
at x. The Neumann boundary condition on ∂T effectively reflects
the symmetric random walk in the direction normal to the sphere.
Once WPT has been found on T , it can be cropped to the original
image domain Ω̄.

Computing a discrete approximation of WPT inside S can be
done in linear time with the multigrid algorithm described in [6, 8].
This algorithm can be extended to approximateWPT inside T − S̄
by appropriately discretizing the Neumann boundary conditions. We
have found that applying two w-cycles, which employ naive bound-
ary conditions at the coarse levels (placing the boundary at the near-
est coarse grid points, instead of modifying the nearby coarse equa-
tions to account for the fine, pixel-level location of the boundary),
yields a good approximation.

Fig. 1(c) shows orthogonal slices of a version of the PT that has
been chosen to enhance contour visualization.

2.2.3. Ψ Transform

In addition to presenting the PT, Gorelick et al. [6] presented a func-
tion (in their Eq. (8)) based on the PT that proved to be very useful in
detecting shape concavities. In order to investigate its potential use-
fulness for registration, we generalize her originalΦ function to both
the interior and exterior of a shape in 3D, and relabel the functionΨ
in order to avoid any confusion with the deformation in (1):

Ψ(x) =

{
WPT (x)− 1

4
‖∇WPT (x)‖2 , ∀x ∈ S̄

WPT (x) + 1

4
‖∇WPT (x)‖2 , ∀x /∈ S̄.

(7)

We define the Ψ Transform (ΨT) by:

WΨ(x) =

{
ln(1−Ψ(x)) , ∀x ∈ S̄
ln(1 + Ψ(x)) , ∀x /∈ S̄.

(8)

Note that the WΨ is continuous everywhere except on ∂S, due
to the differentiability ofWPT . Fig. 1(d) shows orthogonal slices of
ΨT.

3. REGISTRATION EXPERIMENT

In order to determine whether implicit shape representations are use-
ful for nonrigid registration of livers, we designed an experiment us-
ing a data set of serial CT liver scans. The data set was taken from
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(a) Segmented liver (b)WDT

(c) sign(WPT ) ·
√
|WPT | (d)WΨ

Fig. 1. Segmented liver and implicit shape representations.

a drug trial where serial scans were done for each patient to monitor
tumours undergoing an experimental treatment for colorectal metas-
tases in the liver. Five patients were randomly chosen, and their first
and last scans form image pairs to be registered. All scans are spiral
CT scans with voxel size 1 × 1 × 7.5 mm3, with the exception of
one scan with voxel size 1×1×5 mm3. Liver delineation was done
manually on a slice-by-slice basis and approved by a clinician.

A set of 4-8 corresponding landmarks that were used as ground
truth for validation were chosen in each image pair by a radiother-
apist. The landmarks were based on target points visible on both
scans, and were the locations of vascular or ductal branching points
or hepatic fissures.

To reduce the amount of computational overhead, we resampled
each image to a resolution of 4 × 4 × 4 mm3, yielding volumetric
images on the order of 128× 128× 25 voxels. Affine alignment via
optimal linear registration was performed to align each of the image
pairs, as well as to align binary images of the liver segments de-
rived from each pair. From the affine-aligned images, we computed
DT, PT, and ΨT. For each type of image pair of affine-aligned im-
ages (original, DT, PT, andΨT), we nonrigidly registered the current
scan to the prior scan using nonparametric deformation fields with
Dirichlet boundary conditions, while varying the following parame-
ters:

• Dissimilarity Measure: {SSD, MI}
• Regularizer: {Elastic, Diffusion, Curvature}
• Weighting Factor α: {0.1, 1, 10, 100}

Note that for the original images, we did not consider MI as a
dissimilarity measure, given that each original image in a pair was
from the same modality and of the same patient.

For each resulting deformation field, we predicted where each
current ground truth landmark would have come from in the prior
scan. From these predicted positions and the known positions of the
landmarks in the prior scans, we computed the mean Target Regis-
tration Error (TRE) in millimeters. Optimal weighting factors were

found for each combination of image type, dissimilarity measure and
regularizer, by choosing the weighting factor in which TRE was re-
duced the most.

4. RESULTS

Table 2 illustrates the best weighting factors found for each com-
bination of the other parameters. The first and second numbers in
each entry correspond to the use of the SSD and MI dissimilarity
measures, respectively.

Regularizer Original DT PT Ψ
Elastic 100/NA 1/10 100/100 0.1/1
Diffusion 1/NA 0.1/1 0.1/10 0.1/0.1
Curvature 10/NA 0.1/0.1 10/0.1 10/0.1

Table 2. Optimal weighting factor α, (SSD/MI); NA = not applica-
ble

Fig. 2 shows the mean TRE (in millimeters) for each type of
registration performed on each patient, with the optimal weighting
factors taken from Table 2.

Original DT (SSD,MI) PT (SSD,MI) Psi (SSD,MI)
0

5

10

15

20

25

30

35

40

45
Patient 1, Mean TRE (mm)

Original DT (SSD,MI) PT (SSD,MI) Psi (SSD,MI)
0

5

10

15

20

25

30

35

40

45
Patient 2, Mean TRE (mm)

Original DT (SSD,MI) PT (SSD,MI) Psi (SSD,MI)
0

10

20

30

40

50

60
Patient 3, Mean TRE (mm)

Original DT (SSD,MI) PT (SSD,MI) Psi (SSD,MI)
0

10

20

30

40

50

60
Patient 4, Mean TRE (mm)

Original DT (SSD,MI) PT (SSD,MI) Psi (SSD,MI)
0

10

20

30

40

50

60
Patient 5, Mean TRE (mm)

Fig. 2. Mean TRE results for each patient, using elastic (blue), diffu-
sion (green), and curvature (red) regularizers. The horizontal, dashed
line indicates the TRE computed without any registration.

Some general conclusions can be drawn from these results. First,
none of the nonrigid registration algorithms appeared to perform
well on patients 3 and 4, regardless of whether they were based on
the original images or on implicit representations of the liver. To
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Fig. 3. Median TRE results patients 3 and 4, using elastic (blue),
diffusion (green), and curvature (red) regularizers.

investigate the potential problems, we show the median TRE values
for these patients in Fig. 3. From this additional information, it is
clear that for patient 3, the only possibility for slight improvement in
TRE lies in the use of the curvature regularizer applied to the origi-
nal, DT, or ΨT images. For patient 4, the lower median TRE values
show that some of the landmarks are being moved slightly closer due
to nonrigid registration, but one or more of the landmarks might be
outliers.

Based on the remaining patients, the diffusion and curvature reg-
ularizers generally perform better when minimizing SSD than when
minimizing MI. In addition, the curvature regularizer generally out-
performs the diffusion and elastic regularizers when SSD is mini-
mized. It is clear from these results that, independent of whether
the registration is based on the original images or on some implicit
shape representation, the use of the curvature regularizer in conjunc-
tion with SSD is preferred.

With this combination of curvature/SSD, it is also clear that reg-
istration based on any of the implicit shape representations outper-
forms registration based on the original image data. Furthermore,
the DT andΨT images appear to slightly outperform the PT images.

5. DISCUSSION

This experiment provides insight into the applicability of nonrigid
registration techniques in clinical practice. First, the validation with
manually labeled ground truth yielded surprising results. In two of
the five patients, nonrigid registration failed to provide any notice-
able improvement in TRE over no registration at all, even though the
SSD andMI dissimilarity measures were suitably reduced/enhanced.
Furthermore, in only one of the remaining three patients did the
mean TRE approach 1 centimeter. This could be due to errors in
the manually labelled landmarks, although it does suggests that ro-
bust subcentimeter accurate nonrigid registration of livers is still an
open problem.

The relatively outstanding performance of the curvature regu-
larizer over the diffusion and elastic regularizers was also an inter-
esting result, given that it might seem that elastic regularizers could
be readily tuned via biomechanical models of the underlying tissue.
One possible explanation is that the curvature regularizer has a much
broader Green’s function than the diffusion or elastic regularizers.
This could equate to smoother overall deformations in practice.

Finally, it was somewhat surprising to see that the use of the PT
yielded slightly worse results than the use of the DT. We had ex-
pected the opposite result, given the PT’s differentiability and better
ability to quickly become smooth around noisy surfaces. One pos-
sible explanation is that the points of nondifferentiability in the DT
were more salient than any points in the PT, giving the force fields

larger weight in those areas. However, the comparable performance
of the ΨT to the DT is also interesting, given that the ΨT is a func-
tion of the PT itself. This suggests that there may be further infor-
mation that can be gleaned from the PT that might be more useful
for registration.

6. CONCLUSIONS AND FUTUREWORK

In this paper, we used serial CT examinations of the liver to examine
the use of implicit shape representations for nonrigid registration.
Using ground truth in the form of corresponding landmarks manu-
ally labeled by a radiotherapist, we were able to make the following
conclusions. First, in some cases, global + nonrigid registration fails
to perform better than using no registration at all. Second, in cases
where nonrigid registration does yield a clinicial improvement, the
use of implicit representations of the liver outperforms the use of the
original image data. Third, in these cases, the use of the standard
curvature regularizer and sum of squared differences dissimilarity
measure is preferred over other standard regularizers, and over mu-
tual information.

There are many potential areas for exploration, such as: the use
of other features derived from the DT or PT; the use of scale-space
shape representations; the fusion of shape and texture information
for registration; the use of inverse-consistent registration techniques;
and, the robustness of these registration techniques to various auto-
matic (imperfect) segmentations of the liver.
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